The software to perform the RAID-functionality and control the hard disks can either be located on a separate controller card (a hardware RAID controller) or it can simply be a driver. Some versions of Windows, such as Windows Server 2003, as well as Mac OS X include software RAID functionality. Hardware RAID controllers cost more than pure software but they also offer better performance.
RAID-systems can be based with an number of interfaces, including SCSI, IDE, SATA or FC (fibre channel.) There are systems that use SATA disks internally but that have a FireWire or SCSI-interface for the host system.
There are different RAID levels, each suiting specific situations. RAID levels are not standardized by an industry group. This explains why companies are sometimes creative and come up with their own unique implementations.
Sometimes disks in a RAID system are defined as JBOD, which stands for ‘Just a Bunch Of Disks’. This means that those disks do not use a specific RAID level and are used as if they were stand-alone disks. This is often done for disks that contain swap files or spooling data.
Below is an overview of the most popular levels:
RAID 0: striping
In a RAID 0 system, data are split up in blocks that get written across all the drives in the array. By using multiple disks (at least 2) at the same time, RAID 0 offers superior I/O performance. This performance can be enhanced further by using multiple controllers, ideally one controller per disk.Advantages
- RAID 0 offers great performance, both in read and write operations. There is no overhead caused by parity controls.
- All storage capacity can be used, there is no disk overhead.
- The technology is easy to implement.
Disadvantages
RAID 0 is not fault-tolerant. If one disk fails, all data in the RAID 0 array are lost. It should not be used on mission-critical systems.Ideal use
RAID 0 is ideal for non-critical storage of data that have to be read/written at a high speed, e.g. on a Photoshop image retouching station.RAID 1: mirroring
Data are stored twice by writing them to both the data disk (or set of data disks) and a mirror disk (or set of disks) . If a disk fails, the controller uses either the data drive or the mirror drive for data recovery and continues operation. You need at least 2 disks for a RAID 1 array.Advantages
- RAID 1 offers excellent read speed and a write-speed that is comparable to that of a single disk.
- In case a disk fails, data do not have to be rebuild, they just have to be copied to the replacement disk.
- RAID 1 is a very simple technology.
Disadvantages
- The main disadvantage is that the effective storage capacity is only half of the total disk capacity because all data get written twice.
- Software RAID 1 solutions do not always allow a hot swap of a failed disk (meaning it cannot be replaced while the server keeps running). Ideally a hardware controller is used.
Ideal use
RAID-1 is ideal for mission critical storage, for instance for accounting systems. It is also suitable for small servers in which only two disks will be used.RAID 3
On RAID 3 systems, datablocks are subdivided (striped) and written in parallel on two or more drives. An additional drive stores parity information. You need at least 3 disks for a RAID 3 array.Advantages
- RAID-3 provides high throughput (both read and write) for large data transfers.
- Disk failures do not significantly slow down throughput.
Disadvantages
- This technology is fairly complex and too resource intensive to be done in software.
- Performance is slower for random, small I/O operations.
Ideal use
RAID 3 is not that common in prepress.RAID 5
RAID 5 is the most common secure RAID level. It is similar to RAID-3 except that data are transferred to disks by independent read and write operations (not in parallel). The data chunks that are written are also larger. Instead of a dedicated parity disk, parity information is spread across all the drives. You need at least 3 disks for a RAID 5 array.A RAID 5 array can withstand a single disk failure without losing data or access to data. Although RAID 5 can be achieved in software, a hardware controller is recommended. Often extra cache memory is used on these controllers to improve the write performance.
Advantages
Read data transactions are very fast while write data transaction are somewhat slower (due to the parity that has to be calculated).Disadvantages
- Disk failures have an effect on throughput, although this is still acceptable.
- Like RAID 3, this is complex technology.
No comments:
Post a Comment